HYPERFINITE EXTENSIONS OF BOUNDED OPERATORS ON A SEPARABLE HILBERT SPACE(1)

BY

L. C. MOORE, JR.

ABSTRACT. Let H be a separable Hilbert space and \hat{H} the nonstandard hull of H with respect to an \aleph_1 -saturated enlargement. Let S be a *-finite dimensional subspace of *H such that the corresponding hyperfinite dimensional subspace \hat{S} of \hat{H} contains H. If T is a bounded operator on H, then an extension \hat{A} of T to \hat{S} where \hat{A} is obtained from an internal *-linear operator on S is called a hyperfinite extension of T. It is shown that T has a compact (selfadjoint) hyperfinite extension if and only if T is compact (selfadjoint). However T has a normal hyperfinite extension if and only if T is subnormal. The spectrum of a hyperfinite extension \hat{A} equals the point spectrum of \hat{A} , and if T is quasitriangular, A can be chosen so that the spectrum of \hat{A} equals the spectrum of T. A simple proof of the spectral theorem for bounded selfadjoint operators is given using a hyperfinite extension.

1. Preliminaries. The nonstandard hull of a normed space was introduced by Luxemburg in [9]. The properties of these spaces have been investigated by Henson, Cozart, and the author in [6], [7], [2], and [8]. We review the relevant definitions here.

Let $(E, \| \cdot \cdot \cdot \|)$ be a normed space and let *M be an \aleph_1 -saturated enlargement [9] of a set theoretical structure M which contains $(E, \| \cdot \cdot \cdot \|)$. An element $p \in ^*E$ is called *finite* if $^*\|p\|$ is a finite element of *R and the set of finite elements of *E is denoted by fin(*E). The monad of 0 is defined by

$$\mu(0) = \{p: p \in *E \text{ and } * ||p|| \text{ is infinitesimal}\}.$$

Both fin(*E) and $\mu(0)$ are vector spaces over the same field as E. We denote the quotient vector space fin(*E)/ $\mu(0)$ by \hat{E} and the canonical quotient mapping of fin(*E) onto \hat{E} by π . A norm may be defined on \hat{E} by letting $\|\pi(p)\|$ be st * $\|p\|$, where st is the standard part operator on *R. The normed space (\hat{E} ,

Received by the editors February 24, 1975.

AMS (MOS) subject classifications (1970). Primary 02H25, 47Axx; Secondary 47B20. Key words and phrases. Nonstandard analysis, Hilbert space, operator, spectrum, subnormal.

⁽¹⁾ The results in this paper were presented at the 1974 Oberwolfach Nonstandard Analysis Meeting which was dedicated to the memory of Abraham Robinson.

 $\|\cdot\cdot\cdot\|$) is called the *nonstandard hull* of $(E, \|\cdot\cdot\cdot\|)$ (with respect to *M).

It is shown in [9] that under the assumption of \aleph_1 -saturation, $(\hat{E}, \| \cdot \cdot \cdot \|)$ is a Banach space. Further $(E, \| \cdot \cdot \cdot \|)$ may be considered as a subspace of $(\hat{E}, \| \cdot \cdot \cdot \|)$ by identifying $x \in E$ with $\pi(*x)$. In the case that the original space is a Hilbert space H with inner product $\langle \ldots, \ldots \rangle$, the nonstandard hull \hat{H} is also a Hilbert space with the extended inner product $\langle \pi(p), \pi(q) \rangle = \operatorname{st}(*\langle p, q \rangle)$.

If S is a *-finite dimensional subspace of *E, then $\hat{S} = \{\pi(p): p \in S \cap \text{fin}(*E)\}$ is called a hyperfinite dimensional subspace of E [7]. We are interested in hyperfinite dimensional subspaces \hat{S} such that $\hat{S} \supseteq E$. It is easy to show that since *M is an enlargement, such hyperfinite dimensional subspaces exist. If H is a separable Hilbert space and $\{e_1, e_2, \dots\}$ is an orthonormal basis, let $S = \text{*-span } \{*e_1, *e_2, \dots, *e_{\omega}\}$ where ω is an infinite positive integer. It is easy to verify that \hat{S} is a hyperfinite dimensional subspace containing H.

Now let H be a separable Hilbert space. Let C denote the field of complex numbers, Z the set of integers, and N the set of positive integers. Let st denote the standard part operator on *C and if α , $\beta \in {}^*C$ and $\alpha - \beta$ is infinitesimal, we write $\alpha =_1 \beta$. If p, $q \in {}^*H$ and ${}^*\|p - q\| =_1 0$, we write $p \sim q$. Similarly if A and D are * -bounded operators on *H , we write $A \sim D$ if ${}^*\|A - D\| =_1 0$. Let B denote the closed unit ball in B. Finally all projections considered on B are assumed to be orthogonal, and in order to avoid confusion, the adjoint of an operator B is denoted by B.

Let S be a *-finite dimensional subspace of *H such that $\hat{S} \supseteq H$ and let $\mathfrak{U}(S)$ be the algebra of *-linear operators A on S such that * $\|A\|$ is a finite element of *R. If $A \in \mathfrak{U}(S)$, it is easy to verify that A induces a bounded operator \hat{A} on \hat{S} by setting

$$A(\pi(p)) = \pi(A(p)).$$

The following result is elementary and the proof is left to the reader.

LEMMA 1.1. Let S be a *-finite dimensional subspace of *H such that $\hat{S} \supseteq H$, let A, $D \in \mathfrak{A}(S)$, and $\lambda \in \text{fin}(*C)$. Then

- (i) $\|\hat{A}\| = st(*\|A\|),$
- (ii) $\widehat{A} + \widehat{D} = \widehat{A} + \widehat{D}$,
- (iii) $\widehat{\lambda A} = \operatorname{st}(\lambda) \widehat{A}$,
- (iv) $\widehat{AD} = \widehat{AD}$,
- (v) $(\hat{A})^{\#} = (\hat{A}^{\#}),$
- (vi) if A is a *-orthogonal projection on S, then \hat{A} is an orthogonal projection on \hat{S} .

Now let T be a bounded operator on H.

DEFINITION 1.2. Let S be a *-finite dimensional subspace of *H such that

 $\hat{S} \supseteq H$ and let $A \in \mathfrak{A}(S)$. If \hat{A} restricted to H is T, then \hat{A} is called a hyperfinite extension of T.

Let S be a *-finite dimensional subspace of *H such that $\hat{S} \supseteq H$ and let P_S be the *-orthogonal projection of *H onto S. Denote the restriction of P_S*T to S by $*T_S$. Since $*\|P_S\|=1$, we have $*\|*T_S\| \le *\|P_S*T\| \le *\|*T\|=\|T\|$, so $*T_S \in \mathfrak{A}(S)$. We denote the operator $*T_S$ on \hat{S} by \hat{T}_S .

LEMMA 1.3. If S is a hyperfinite dimensional subspace of \hat{H} such that $\hat{S} \supseteq H$, then \hat{T}_S is a hyperfinite extension of T and $\|\hat{T}_S\| = \|T\|$.

PROOF. Let $x \in H$. Then by assumption there exist $p, q \in S$ such that $p \sim *x$ and $q \sim *(Tx)$. Then $*Tp \sim *T(*x) = *(Tx) \sim q$ and $*P_S*T(p) \sim *P_Sq = q$. Thus $\hat{T}_S(x) = \hat{T}_S(\pi(p)) = \pi(*T_Sp) = \pi(q) = Tx$ and \hat{T}_S extends T. By the comments above $\|\hat{T}_S\| \leq \|T\|$ and since \hat{T}_S extends T we have $\|T\| \leq \|\hat{T}_S\|$. Thus $\|T\| = \|\hat{T}_S\|$.

DEFINITION 1.4. Let S be a hyperfinite dimensional subspace of H such that $\hat{S} \supseteq H$. Then \hat{T}_S is called the standard hyperfinite extension of T with respect to S.

2. Selfadjoint, compact, and normal operators.

LEMMA 2.1. $(\hat{T}_S)^\# = \widehat{(T^\#)}_S$ for any bounded operator T and any *-finite dimensional subspace S of *H such that $\hat{S} \supseteq H$.

PROOF. The operator *T_S is the restriction of $P_S {}^*TP_S$ to S and $({}^*T_S)^\#$ is the restriction of $P_S ({}^*T)^\# P_S = P_S {}^*(T^\#) P_S$ to S. Thus $({}^*T_S)^\# = {}^*(T^\#)_S$ and the result follows from Lemma 1.1(v).

LEMMA 2.2. The following conditions are equivalent:

- (i) T is selfadjoint,
- (ii) some hyperfinite extension of T is selfadjoint,
- (iii) every standard hyperfinite extension of T is selfadjoint.

PROOF. Clearly (iii) implies (ii) and since the restriction of a selfadjoint operator to an invariant subspace is again selfadjoint, (ii) implies (i). Finally if T is selfadjoint, then Lemma 2.1 implies that every standard hyperfinite extension is again selfadjoint, i.e., (i) implies (iii).

LEMMA 2.3. The following conditions are equivalent:

- (i) T is compact,
- (ii) some hyperfinite extension of T is compact,
- (iii) every standard hyperfinite extension of T is compact.

PROOF. Clearly (iii) implies (ii) and since the restriction of a compact operator to an invariant subspace is again compact, (ii) implies (i). To show

that (i) implies (iii) assume T is compact and \hat{S} is a hyperfinite dimensional subspace of \hat{H} containing H. Let $\epsilon > 0$. Then there exists a finite set $\{x_1, x_2, \ldots, x_n\}$ in H such that $T(B) \subseteq \bigcup_{i=1}^n \{x \in H: \|x - x_i\| < \epsilon\}$. Hence $*T(*B) \subseteq \bigcup_{i=1}^n \{p \in *H: *\|p - *x_i\| < \epsilon\}$ and it follows that $\hat{T}_S(\hat{B}_S) \subseteq \bigcup_{i=1}^n \{x \in \hat{S}: \|x - x_i\| \le \epsilon\}$ where \hat{B}_S is the closed unit ball in \hat{S} . Thus \hat{T}_S is compact.

Let ω be an infinite positive integer, then the (external) cardinality of the set $\{1, 2, \ldots, \omega\}$ is always greater than or equal to c. To see this note that for each $r \in [0, 1]$ there exists $k_r \in \{1, 2, \ldots, \omega\}$ such that $\operatorname{st}(k_r/\omega) = r$. We use this observation in the proof of

Theorem 2.4. Let \hat{S} be a hyperfinite dimensional subspace of \hat{H} containing H.

- (i) If $A \in \mathfrak{A}(S)$, then \hat{A} is compact if and only if $\hat{A}(\hat{S})$ is separable.
- (ii) T is compact if and only if $\hat{T}_S(\hat{S}) \subseteq H$.

PROOF. (i) Clearly if \hat{A} is compact then $\hat{A}(\hat{S})$ is separable.

On the other hand if \hat{A} is not compact then for some $\epsilon > 0$ there exists a sequence $\{x_n\}$ in \hat{S} such that $\|x_n\| \le 1$ for all n and $\|\hat{A}x_n - \hat{A}x_m\| > \epsilon$ for all $n \ne m$. For each n pick $p_n \in S \cap {}^*B$ such that $\pi(p_n) = x_n$ and using the \aleph_1 -saturation extend this to an internal sequence defined on *N . Now there exists an infinite positive integer ω such that $p_k \in {}^*B \cap S$ for all $k \le \omega$ and ${}^*\|Ap_k - Ap_j\| > \epsilon$ for all $1 \le j < k \le \omega$. Thus $\{\hat{A}(\pi(p_k)): 1 \le k \le \omega\}$ is a set in $\hat{A}(\hat{S})$ with cardinality the same as the cardinality of $\{1, 2, \ldots, \omega\}$ and such that every pair of elements is at least ϵ apart. Since $\{1, 2, \ldots, \omega\}$ is not countable, this implies $\hat{A}(\hat{S})$ is not separable.

(ii) If $\hat{T}_S(\hat{S}) \subseteq H$, then \hat{T}_S is compact by (i) above and T is compact by Lemma 2.3. On the other hand if T is compact, then $p \in \text{fin}(*H)$ implies that for some $x \in H$ we have $*Tp \sim *x$ [10]. It follows easily that $\hat{T}_S(\hat{S}) \subseteq H$.

The situation for normal operators is more complicated. We recall a few definitions.

DEFINITION 2.5. (i) T is said to be *quasidiagonal* if there is an increasing sequence $\{E_n\}$ of projections of finite rank such that $E_n \to 1$ (strongly) and $||TE_n - E_n T|| \to 0$.

(ii) T is said to be *quasitriangular* if there is an increasing sequence $\{E_n\}$ of projections of finite rank such that $E_n \to 1$ (strongly) and $||TE_n - E_nTE_n|| \to 0$.

Both definitions are due to Halmos ([4] and [5]). Note that every quasidiagonal operator is quasitriangular. Recall that a closed subspace of H is said to be reducing for T if it is invariant for both T and $T^{\#}$. Thus T is quasidiagonal (quasitriangular) if and only if there are sufficiently many "almost reducing" ("almost invariant") finite dimensional subspaces. It is easy to show [5] that compact operators and normal operators are quasidiagonal.

The following theorem is proved by Halmos [4] in the quasitriangular case. The proof in the quasidiagonal case is analogous.

THEOREM 2.6 (HALMOS). (i) T is quasidiagonal if and only if there is a sequence $\{E_n\}$ of projections of finite rank such that $E_n \to 1$ (strongly) and $\|TE_n - E_n T\| \to 0$.

(ii) T is quasitriangular if and only if there is a sequence $\{E_n\}$ of projections of finite rank such that $E_n \to 1$ (strongly) and $||TE_n - E_nTE_n|| \to 0$.

In other words both definitions in 2.4 are unchanged if the requirement that the sequence of projections be increasing is dropped. The following lemma is a simple consequence of Theorem 2.5.

- Lemma 2.7. (i) T is quasidiagonal if and only if there exists a *-finite dimensional subspace S of *H such that $\hat{S} \supseteq H$ and $*TP_S \sim P_S *T$.
- (ii) T is quasitriangular if and only if there exists a *-finite dimensional subspace S of *H such that $\hat{S} \supseteq H$ and * $TP_S \sim P_S * TP_S$.
- LEMMA 2.8. T has a normal standard hyperfinite extension if and only if T is normal.

PROOF. Assume that \hat{T}_S is a normal standard hyperfinite extension. Since $(\hat{T}_S)^\# = \widehat{(T^\#)}_S$ both \hat{T}_S and $(\hat{T}_S)^\#$ leave H invariant. Thus H is a reducing subspace for \hat{T}_S and since T is the restriction of \hat{T}_S to H, T is also normal.

Assume T is normal. Then T is quasidiagonal and by Lemma 2.7 there exists a *-finite dimensional subspace S of *H such that $\hat{S} \supseteq H$ and * $TP_S \sim P_S *T$. Now $\widehat{(T_S)}^\# = \widehat{(T^\#)_S}$ by Lemma 2.1, so $\widehat{T}_S(\widehat{T}_S)^\# = \widehat{T}_S(\widehat{T^\#)_S} = (*T_S *(T^\#)_S)^{\widehat{}}$. Similarly $(\hat{T}_S)^\# \widehat{T}_S = (*(T^\#)_S *T_S)^{\widehat{}}$. Thus in order to show that \widehat{T}_S is normal, it is sufficient to show that $(P_S *TP_S)(P_S *(T^\#)P_S) \sim (P_S *(T^\#)P_S)(P_S *TP_S)$. But since $*TP_S \sim P_S *T$, we have $(P_S *TP_S)(P_S *(T^\#)P_S) \sim P_S *T^*(T^\#)P_S = P_S *(T^\#)P_S = P_S *(T^\#)P_S \sim (P_S *(T^\#)P_S)(P_S *TP_S)$.

EXAMPLE 2.9. Even if T is normal it does not follow that *every* standard hyperfinite extension of T is normal. For example let T be the two-sided shift, i.e., T is defined on $l_2(Z)$ and $Te_k = e_{k+1}$ where $\{e_k \colon k \in Z\}$ is the usual orthonormal basis on $l_2(Z)$. Pick ω an infinite positive integer and let S = *-span of $\{*e_k \colon -\omega \leqslant k \leqslant \omega\}$. Then $*T(*e_\omega) = *e_{\omega+1}$, so $*T_S(*e_\omega) = 0$ and $*(T^\#)_S*T_S(*e_\omega) = 0$. But $*T_S*(T^\#)_S(*e_\omega) = *T_S(*e_{\omega-1}) = *e_\omega$. Thus $(\hat{T}_S)^\#\hat{T}_S(\pi(e_\omega)) \neq 0$ and $\hat{T}_S(\hat{T}_S)^\#(\pi(e_\omega)) = 0$, hence \hat{T}_S is not normal.

Recall that an operator T is said to be *subnormal* if it has a normal extension. It is easy to verify that an operator on a separable Hilbert space is subnormal if and only if it has a normal extension to a separable Hilbert space.

THEOREM 2.10. T has a normal hyperfinite extension if and only if T is subnormal.

PROOF. Assume T is subnormal. Then we may assume H is a subspace of a separable Hilbert space K and that T has a normal extension Q on K. Further since K is separable we may assume $K \in M$. Since K is normal it is quasidiagonal, so there is a *-finite dimensional subspace V of *K such that $\hat{V} \supseteq K$ and * $QP_V \sim P_V *Q$.

Since both H and K are separable, there is an isometry Φ of K onto H. Let S be the image of V under Φ . Then S is a *-finite dimensional subspace of *H. We assert that $\hat{S} \supseteq H$. To see this let $x \in H$ and let $z = \Phi^{-1}x$. Since $\hat{V} \supseteq K$ there exists $q \in V$ such that $q \sim *z$. It follows that $\Phi q \sim \Phi *z = *(\Phi z) = *x$, and so $\hat{S} \supseteq H$.

Next let $\{e_k\colon k\in N\}$ be a fixed orthonormal basis in H. For each $k\in N$, pick $p_k\in S$ and $q_k\in V$ such that $p_k\sim *e_k$ and $q_k\sim *e_k$. For $k,j\in N$ with $k\neq j$, we have $*\langle p_k,p_j\rangle=_1$ $*\langle *e_k,*e_j\rangle=0$, thus by applying the Gram-Schmidt process to $\{p_k\colon k\in N\}$ we may assume $*\langle p_k,p_j\rangle=0$ for $k\neq j$. Similarly we may assume $*\langle q_k,q_j\rangle=0$ for $k,j\in N$ and $k\neq j$.

Now for each $n \in N$ let A_n be the set of all *-linear mappings θ of V onto S such that $\theta q_k = p_k$ for $k = 1, 2, \ldots, n$ and $1 - 1/n \le * \|\theta\| \le 1 + 1/n$. Clearly each set A_n is nonempty and internal. Hence by \aleph_1 -saturation there exists $\Psi \in \bigcap_{n \in N} A_n$; so Ψ is a *-linear mapping of V onto S such that $\Psi(q_k) = p_k$ for all $k \in N$ and $*\|\Psi\| = 1$. Note that if q and $q' \in V \cap \text{fin}(*K)$ then it follows from the parallelogram identity that $*\langle q, q' \rangle = 1 *\langle \Psi q, \Psi q' \rangle$.

We define a mapping A of S into S by $Ap = \Psi P_V^* Q \Psi^{-1} p$. Clearly A is *-linear and $\|A\| \le \|*\| Q \| + \epsilon$ for any real positive ϵ . Thus $A \in \mathfrak{A}(S)$. In order to show that \widehat{A} extends T we have to show that if $x \in H$ and $q \in V$ with $q \sim x$, then $\Psi q \sim x$. So assume $X = \sum_{k \in N} x_k e_k \in H$ and $Q \in V$ such that $\|X - Y\| = 1$. Then for every $Q \in V$ of there exists $Q \in V$ such that $\|X - Y\| = 1$ and since $\|X - Y\| = 1$ and $\|X - Y\| = 1$ and it follows that $\|X - Y\| = 1$ and $\|X - Y\| = 1$ and it follows that $\|X - Y\| = 1$ and $\|X - Y\| = 1$ and $\|X - Y\| = 1$ and $\|X - Y\| = 1$ and it follows that $\|X - Y\| = 1$ and $\|X - Y\| = 1$

Now we show that \hat{A} extends T. In order to do this it is sufficient to show that $\hat{A}e_k = Te_k$ for all $k \in N$. If $k \in N$, then $\hat{A}e_k = \hat{A}\pi(p_k) = \pi(Ap_k)$. But $\Psi^{-1}(p_k) = q_k$ and $*Q(q_k) \sim *Q(*e_k) = *(Te_k)$, so $P_V*Qq_k \sim *(Te_k)$. By the observation above $Ap_k = \Psi P_V*Qq_k \sim *(Te_k)$ and $\hat{A}(e_k) = Te_k$.

It remains to show that \hat{A} is normal. Define D on S by $Dp = \Psi P_V * Q^\# \Psi^{-1} p$. We assert that $D \sim A^\#$. To see this let $p, p' \in S$ such that $* \|p\| = * \|p'\| = 1$. Then

$$\begin{split} *\langle Ap, \ p' \rangle &= *\langle \Psi P_V * Q \Psi^{-1} p, \ p' \rangle =_1 \ *\langle P_V * Q \Psi^{-1} p, \ \Psi^{-1} p' \rangle \\ &= *\langle *Q \Psi^{-1} p, \ \Psi^{-1} p' \rangle = *\langle \Psi^{-1} p, \ *Q^\# \Psi^{-1} p' \rangle \\ &= *\langle \Psi^{-1} p, \ P_V * Q^\# \Psi^{-1} p' \rangle =_1 \ *\langle p, \ \Psi P_V * Q^\# \Psi^{-1} p' \rangle = *\langle p, \ Dp' \rangle. \end{split}$$
 Hence $D \sim A^\#.$

Finally we show that \hat{A} is normal. Since $\hat{A}^\# = \hat{A}^\# = \hat{D}$, it is sufficient to show that for $p \in \text{fin}(^*H) \cap S$ we have $ADp \sim DAp$. If $p \in \text{fin}(^*H) \cap S$, then $ADp = (\Psi P_V * Q \Psi^{-1})(\Psi P_V * Q^\# \Psi^{-1}p) = \Psi P_V * Q P_V * Q^\# \Psi^{-1}p$. Since $P_V * Q \sim ^*QP_V$ we have $ADp \sim \Psi P_V * Q^*Q^\# \Psi^{-1}p$ and since Q is normal $ADp \sim \Psi P_V * Q^\# Q \Psi^{-1}p$. But $\Psi^{-1}p = P_V \Psi^{-1}p$ and $P_V * Q \sim ^*QP_V$, hence

$$\begin{split} ADp &\sim \Psi P_V^* Q^\# P_V^* Q \Psi^{-1} p \\ &= \Psi P_V^* Q^\# \Psi^{-1} \Psi P_V^* Q \Psi^{-1} p = DAp. \end{split}$$

This ends the proof of Theorem 2.10.

3. Spectrum of hyperfinite operators. We introduce the following notation. If Q is an operator on a Hilbert space H, then $\Lambda(Q)$ is the spectrum of Q, $\Pi_0(Q)$ is the point spectrum of Q (eigenvalues of Q), and $\Pi(Q)$ is the approximate point spectrum of Q ($\lambda \in \Pi(Q)$ if for every $\epsilon > 0$ there exists $x \in H$ such that $\|x\| = 1$ and $\|Qx - \lambda x\| < \epsilon$). Note that if $\lambda \in \Lambda(Q) \setminus \Pi(Q)$ then the range of $Q - \lambda I$ is a proper closed subspace of H.

THEOREM 3.1. Let S be a *-finite dimensional subspace of *H such that $\hat{S} \supseteq H$ and let $A \in \mathfrak{A}(S)$. Then $\Lambda(\hat{A}) = \Pi_0(\hat{A})$.

PROOF. First assume $\lambda \in \Pi(\hat{A})$. Then for every $n \in N$ there exists $p_n \in S$ such that $\|p_n\| = 1$ and $\|Ap_n - \lambda p_n\| < 1/n$. It follows by λ_1 -saturation that there exists $p \in S$ such that $\|p\| = 1$ and $Ap \sim \lambda p$. Hence $\hat{A}(\pi(p)) = \lambda \pi(p)$ and $\lambda \in \Pi_0(\hat{A})$.

Now suppose there exists $\lambda \in \Lambda(A) \setminus \Pi(\hat{A})$. Then the range of $\hat{A} - \lambda I$ is a proper closed subspace of \hat{S} so there exists $z \in \hat{S}$ such that $\|z\| = 1$ and $\langle (\hat{A} - \lambda I)x, z \rangle = 0$ for all $x \in \hat{S}$. Denote $A - \lambda I$ by A_{λ} . Pick $w \in S$ such that $\|w\| = 1$ and $\pi(w) = z$. Then $\langle A_{\lambda}(p), w \rangle = 1$ 0 for all $p \in \text{fin}(*H) \cap S$. If A_{λ} is not 1-1 on S, then since S is *-finite and A_{λ} is *-linear, there exists $p \in S$ such that $\|p\| = 1$ and $A_{\lambda}p = 0$. But then $\hat{A}(\pi(p)) = \lambda \pi(p)$ and $\lambda \in \Pi_0(\hat{A}) \subseteq \Pi(\hat{A})$ which is a contradiction. Hence A_{λ} is 1-1 on S and so for some $q \in S$ we have $A_{\lambda}q = w$. Now if $q \in \text{fin}(*H)$, then $1 = \|w\|^2 = \langle A_{\lambda}q, w \rangle = 1$ 0 which is impossible. But if $\|q\|$ is infinite, then $A_{\lambda}[(1/*\|q\|)q] = (1/*\|q\|)w \sim 0$ and $(\hat{A} - \lambda I)\pi[(1/*\|q\|)q] = 0$. Again $\lambda \in \Pi_0(A)$ which is a contradiction. Thus $\Lambda(\hat{A}) = \Pi(\hat{A}) = \Pi_0(\hat{A})$.

Note that if \hat{A} is a hyperfinite extension of T, then $\Pi(T) \subseteq \Pi(\hat{A}) = \Lambda(\hat{A}) = \Pi_0(\hat{A})$. For standard hyperfinite extensions we can say more.

THEOREM 3.2. If \hat{T}_S is a standard hyperfinite extension of T, then $\Lambda(T) \subseteq \Lambda(\hat{T}_S) = \Pi_0(\hat{T}_S)$.

PROOF. By Theorem 3.1 we have $\Lambda(\hat{T}_S) = \Pi_0(T_S)$ and by the observation above $\Pi(T) \subseteq \Lambda(\hat{T}_S)$. Suppose $\lambda \in \Lambda(T) \setminus \Pi(T)$. Then there exists $z \in H$ such that $\|z\| = 1$ and $\langle z, (T - \lambda I)x \rangle = 0$ for all $x \in H$. Now if $p \in \text{fin}(*H) \cap S$, then $\langle *z, (*T - \lambda I)p \rangle = 0$ so $\langle P_S *z, P_S(*T - \lambda I)p \rangle = 1$ 0. Thus if $w = P_S *z$, then $\langle w, (*T_S - \lambda I)p \rangle = 1$ 0 for all $p \in \text{fin}(*H) \cap S$. Using the argument given above in the last part of the proof of Theorem 3.1, it follows that $\lambda \in \Pi_0(T)$.

EXAMPLES 3.3. (i) We give an example of a hyperfinite extension \hat{A} of an operator T such that $\Lambda(T) \not\subseteq \Lambda(A)$. Let T be the shift operator on $l_2(N)$ ($Te_k = e_{k+1}$ for all $k \in N$). Then T is subnormal, indeed T has an extension to the shift operator Q on $l_2(Z)$. Since Q is a unitary operator, it is easy to verify that in this case the hyperfinite extension \hat{A} constructed in the proof of Theorem 2.10 is also a unitary operator. Thus $\Lambda(\hat{A}) \subseteq \{\lambda \in C: |\lambda| = 1\}$, but $\Lambda(T) = \{\lambda \in C: |\lambda| \le 1\}$.

We give an example of an operator T and a standard hyperfinite extension \hat{T}_S such that $\Lambda(T) \neq \Lambda(\hat{T}_S)$. Let T be the shift operator on $l_2(Z)$ and let \hat{T}_S be the standard hyperfinite extension constructed in Example 2.9. Then $0 \in \Lambda(\hat{T}_S) \setminus \Lambda(T)$.

THEOREM 3.4. If T is quasitriangular then there exists a standard hyperfinite extension \hat{T}_S such that $\Lambda(T) = \Lambda(\hat{T}_S)$.

PROOF. Let S be a *-finite dimensional subspace of *H such that $\hat{S} \supseteq H$ and ${}^*TP_S \sim P_S {}^*TP_S$. If $\lambda \in \Lambda(\hat{T}_S)$ then by Theorem 3.1 there exists $p \in S$ such that ${}^*\|p\| = 1$ and $P_S {}^*Tp \sim \lambda p$. But ${}^*Tp \sim P_S {}^*Tp$, so ${}^*Tp \sim \lambda p$. It follows by a simple application of the transfer principle that $\lambda \in \Pi(T)$. Thus $\Lambda(\hat{T}_S) \subseteq \Lambda(T)$ and by Theorem 3.2 we have $\Lambda(\hat{T}_S) = \Lambda(T)$.

Note that the proof of Theorem 3.4 shows that if T is quasitriangular then $\Lambda(T) = \Pi(T)$. This was first shown by Deddens [3]. It is an interesting question whether for an arbitrary bounded operator T there exists a standard hyperfinite extension \hat{T}_S such that $\Lambda(T) = \Lambda(\hat{T}_S)$.

The following result is a partial answer to a question posed to the author by W. A. J. Luxemburg. If S is a *-finite dimensional subspace of *H and $A \in \mathfrak{A}(S)$, let $E(A) = \{\lambda \in *C : \text{ there exists } p \in S \text{ with } * \|p\| = 1 \text{ and } Ap = \lambda p\}$, i.e. E(A) is the set of *-eigenvalues of A.

THEOREM 3.5. If T is quasitriangular there exists a *-finite dimensional subspace S with $\hat{S} \supseteq H$ and $A \in \mathfrak{A}(S)$ such that $A \sim *T_S$ and $\operatorname{st}(E(A)) = \Lambda(T)$.

PROOF. By Theorem 3.4 there exists a standard hyperfinite dimensional extension \hat{T}_S of T such that $\Pi_0(\hat{T}_S) = \Lambda(\hat{T}_S) = \Lambda(T)$. Assume $\Lambda(T)$ is infinite and pick a countable dense subset $\{\lambda_k \colon k \in N\}$ of $\Lambda(T)$.

We show first that for every $n \in N$ there exists $A_n \in \mathfrak{A}(S)$ such that $A_n \sim {}^*T_S$ and $E(A_N) \supseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$. Since $\Pi_0(\hat{T}_S) = \Lambda(\hat{T}_S) = \Lambda(T)$, for each $k \in N$ there exists $x_k \in \hat{S}$ such that $\|x_k\| = 1$ and $\hat{T}_S(x_k) = \lambda_k x_k$. For each k pick $p_k \in S$ such that $\|p_k\| = 1$ and $\pi(p_k) = x_k$. Thus ${}^*T_Sp_k \sim \lambda_k p_k$ for each $k \in N$. Now let $n \in N$. Since $\{x_1, x_2, \ldots, x_n\}$ is linearly independent, it follows that $\{p_1, p_2, \ldots, p_n\}$ is *-linearly independent (Theorem 1.8 of [6]). Let $S_n = *$ -span of $\{p_1, p_2, \ldots, p_n\}$ and let P_n be the *-projection of S onto S_n .

Let $p \in \text{fin}(*H) \cap S_n$. Then $p = \sum_{k=1}^n a_k p_k$ and each $a_k \in \text{fin}(*R)$. If to the contrary some a_k is infinite, let

$$b = \max\{|a_1|, |a_2|, \ldots, |a_n|\}.$$

Then $\Sigma_{k=1}^n (a_k/b)p_k = (1/b)p \sim 0$ and so $\Sigma_{k=1}^n \operatorname{st}(a_k/b)x_k = 0$ which contradicts the independence of the set $\{x_1, x_2, \ldots, x_n\}$, since for some k, $|\operatorname{st}(a_k/b)| = 1$. Define the *-linear mapping Q_n on S_n by $Q_n(\Sigma_{k=1}^n a_k p_k) = \Sigma_{k=1}^n a_k \lambda_k p_k$ for all $a_1, a_2, \ldots, a_n \in {}^*C$ and set $A_n = Q_n P_n + {}^*T_S (I - P_n)$. Now if $p \in S$ and ||p|| = 1, then $A_n p - {}^*T_S p_n = (Q_n - {}^*T_S) P_n p$. But $||P_n p|| \leq 1$, so $P_n p = \Sigma_{k=1}^n a_k p_k$ where a_k is finite for each k. Thus

$$(Q_n - T_S)p = \sum_{k=1}^n a_k (\lambda_k p_k - T_S p_k) \sim 0$$

since $\lambda_k p_k \sim {}^*T_S p_k$ for each k. It follows that $A_n \sim {}^*T_S$ and clearly $\{\lambda_1, \lambda_2, \ldots, \lambda_n\} \in E(A_n)$.

Finally note that if $\Lambda(T)$ is finite, say $\Lambda(T) = \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$, then we may take $A = A_n$ above.

4. Spectral theorem for a bounded self adjoint operator. There have been previous nonstandard proofs of the spectral theorem for a bounded selfadjoint operator. In particular, there is a proof by A. Bernstein [1]. The interest of

the proof presented here is that it is short and makes essential use of the external projection of \hat{S} onto H.

Let T be a bounded selfadjoint operator on H and let S be any *-finite dimensional subspace of *H such that $\hat{S} \supseteq H$. Then * T_S is *-selfadjoint on S and \hat{T}_S is a selfadjoint extension of T to \hat{S} . Now if V is a finite dimensional inner product space and Q is a selfadjoint linear transformation of V into itself, there exist an orthonormal basis $\{e_1, e_2, \ldots, e_n\}$ of V and $\{\lambda_1, \lambda_2, \ldots, \lambda_n\} \subseteq R$ such that

- (i) $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and
- (ii) $Q(\Sigma_{i=1}^n \ a_i e_i) = \Sigma_{i=1}^n \ a_i \lambda_i e_i$ for all choices of a_1, a_2, \ldots, a_n in C. Hence there exists a *-orthonormal basis $\{\psi_1, \psi_2, \ldots, \psi_{\omega}\}$ for S and a *-finite set $\{\lambda_1, \lambda_2, \ldots, \lambda_{\omega}\} \subseteq {}^*R$ such that
 - (i) $\lambda_i \leq \lambda_{i+1}$ for $i = 1, 2, ..., \omega 1$ and
- (ii) $T_S(\sum_{i=1}^{\omega} a_i \psi_i) = \sum_{i=1}^{\omega} a_i \lambda_i \psi_i$ for any internal *-finite sequence $\{a_1, a_2, \ldots, a_{\omega}\} \subseteq {}^*C$.

In particular $^*T_S\psi_i=\lambda_i\psi_i$ and since $^*\|^*T_S\|\leqslant\|T\|$ it follows that λ_i is finite for $i=1,\,2,\,\ldots,\,\omega$. For each real μ and $n\in N$ define $S(\mu,\,n)$ to be the * -span of $\{\psi_k\colon \lambda_k\leqslant \mu+n^{-1}\}$ and $F(\mu,\,n)$ to be the * -projection of S onto $S(\mu,\,n)$. Now $F(\mu,\,n)=0$ if $\lambda_k>\mu+n^{-1}$ for all k, and for each μ the sequence $\{\hat{F}(\mu,\,n)\}$ is a monotone decreasing sequence of projections on \hat{S} . Define $E(\mu)$ to be the strong limit of $\hat{F}(\mu,\,n)$. Then $\{E(\mu)\colon \mu\in R\}$ is the spectral resolution for \hat{T}_S . More precisely:

THEOREM 4.1. (i) $E(\mu) = 0$ if $\mu < \|\hat{T}\|$ and $E(\mu) = I$ if $\|\hat{T}\| < \mu$.

- (ii) $E(\mu)E(\alpha) = E(\alpha)E(\mu) = E(\min(\alpha, \mu))$ for all μ , $\alpha \in R$.
- (iii) $E(\mu)\hat{T}_S = \hat{T}_S E(\mu)$ all $\mu \in R$,
- (iv) $\alpha(E(\beta) E(\alpha)) \leq \hat{T}_{S}(E(\beta) E(\alpha)) \leq \beta(E(\beta) E(\alpha))$ if $\alpha, \beta \in R$ with $\alpha < \beta$.
 - (v) $\lim_{\mu \to \alpha^+} E(\mu) = E(\alpha)$.

PROOF. (i) This is immediate since $st(*||*T_S||) = ||\hat{T}_S|| = ||T||$.

(ii) Let μ , $\alpha \in R$ and $n \in N$, then $F(\mu, n)F(\alpha, n) = F(\alpha, n)F(\mu, n) = F(\min(\mu, \alpha), n).$

Hence $\hat{F}(\mu, n)\hat{F}(\alpha, n) = \hat{F}(\alpha, n)\hat{F}(\mu, n) = \hat{F}(\min(\mu, \alpha), n)$. Now taking limits we obtain (ii).

- (iii) Let $\mu \in R$ and $n \in N$. Then $F(\mu, n)^*T_S = {}^*T_SF(\mu, n)$, hence $\hat{F}(\mu, n)\hat{T}_S = \hat{T}_S\hat{F}(\mu, n)$ and taking limits we obtain (iii).
 - (iv) Let $\alpha, \beta \in R$ with $\alpha < \beta$ and $n \in N$. Then

$$(\alpha + n^{-1})(F(\beta, n) - F(\alpha, n)) \le *T_S(F(\beta, n) - F(\alpha, n))$$

 $\le (\beta + n^{-1})(F(\beta, n) - F(\alpha, n)).$

- Again (iv) follows by applying the operation and taking limits.
- (v) Finally if $\alpha \in R$ then $\{\hat{F}(\mu, n): \mu \in R, \mu > \alpha \text{ and } n \in N\}$ is cofinal with $\{\hat{F}(\alpha, n): n \in N\}$. Hence (v) holds.

Now let P be the (external) projection of \hat{S} onto H. Since $\hat{T}_{\hat{S}}$ leaves H invariant, it is easy to show that P commutes with each projection $E(\mu)$. Hence if $G(\mu)$ is the restriction of $PE(\mu)$ to H for each $\mu \in R$, then $\{G(\mu): \mu \in R\}$ is the spectral resolution for T.

REFERENCES

- 1. A. R. Bernstein, The spectral theorem—a nonstandard approach, Z. Math. Logik Grundlagen Math. 18 (1972), 419-434. MR 47 #4048.
- 2. D. Cozart and L. C. Moore, Jr., The nonstandard hull of a normed Riesz space, Duke Math. J. 41 (1974), 263-275.
- 3. J. A. Deddens, A necessary condition for quasitriangularity, Proc. Amer. Math. Soc. 32 (1972), 630-631. MR 44 #5810.
- 4. P. R. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged) 29 (1968), 283-293. MR 38 #2627.
- 5. ———, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 877-933. MR 42 #5066.
- 6. C. Ward Henson and L. C. Moore, Jr., The nonstandard theory of topological vector spaces, Trans. Amer. Math. Soc. 172 (1972), 405-435; Erratum, ibid 184 (1973), 509. MR 46 #7836; 48 # 2708.
- 7. ———, Subspaces of the nonstandard hull of a normed space, Trans. Amer. Math. Soc. 197 (1974), 131-143.
- 8. ——, Nonstandard hulls of the classical Banach spaces, Duke Math. J. 41 (1974), 277-284.
- 9. W. A. J. Luxemburg, A general theory of monads, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 18-86. MR 39 #6244.
- 10. A. Robinson, Non-standard analysis, North-Holland, Amsterdam, 1966. MR 34 #5680.

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27706